
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

E-mail addr
Journal of Sound and Vibration 306 (2007) 136–152

www.elsevier.com/locate/jsvi
Suppressing self-excited vibrations by synchronous
and time-periodic stiffness and damping variation

Fadi Dohnal

Institute of Sound and Vibration Research, University of Southampton, Highfield, SO17 1BJ, UK

Received 22 December 2006; received in revised form 2 May 2007; accepted 15 May 2007

Available online 2 July 2007
Abstract

Stability investigations on vibration suppression employing the concept of actuators with variable stiffness and damping

elements are presented. Systems with two and more degrees of freedom with linear spring- and damping-elements are

considered, that are subject to self-excitation as well as parametric excitation by simultaneous stiffness and damping

variation. General conditions for full vibration suppression are derived analytically by applying a singular perturbation

method of first order. These conditions naturally lead to the terms of parametric resonance and anti-resonance and enable

a stability classification with respect to the parametric excitation matrices. The results are compared to former

investigations of systems with a pure stiffness variation and a pure damping variation in time. While a specific parametric

stiffness or damping excitation may suppress the system vibrations successfully, the interaction of both excitations modifies

the formerly gained stability regions in the system parameter space. The analytical predictions are verified for exemplary

systems by exact numerical time integration. These basic results obtained can be used for design of a control strategy for

actuators with synchronously variable stiffness and damping elements to suppress transient vibrations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The main objective of this contribution is to investigate the phenomenon of full suppression of self-excited
vibrations by means of a special kind of parametric excitation. Self-excited vibrations represent a dangerous
phenomenon in many engineering fields. Self-excitation of a structure can be caused for example by a steady
wind flow or by dry friction. The self-excitation mechanism considered here is of linearised van der Pol or
Rayleigh type. Both types lead to a linear but negative damping coefficient in the main diagonal of the damping
matrix. A quite interesting active vibration suppression mechanism is the usage of parametric excitation. A
parametric excitation may appear by harmonic variations of one or more system parameters. The resulting
equations of motion are coupled linear differential equations with time-periodic coefficients of the form

MðZtÞ €xðtÞ þ �CðZtÞ _xðtÞ þ KðZtÞxðtÞ ¼ 0, (1)

with the time t, the parametric excitation frequency Z, the position vector x and a scaling factor �. The matrices
M, C and K correspond to the mass/inertia, damping and stiffness coefficients.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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There are several publications dealing with single or coupled differential equations having a time-periodic
coefficient, i.e. Refs. [1–6], and the literature cited therein. The main focus of these works is the destabilising
effect of a parametric excitation. Boundary curves of unstable parameter regions caused by parametric
excitation are determined—the so-called parametric resonances. For systems with one degree of freedom these
analyses lead to the famous Mathieu, Hill or Meissner equation. In these studies, for an additional, positive
damping coefficient stabilising by parametric excitation is possible for systems that are similar to the classical
inverse pendulum problem. A stability analysis of systems with one degree of freedom that are under the
influence of parametric excitation as well as self-excitation can be found in Ref. [7].

The mechanism of damping by parametric excitation as proposed here is based on the effect of
coupling modes by parametric excitation, which is quite different to the stabilisation of the inverse
pendulum. Contrary to the inverse pendulum, the minimum model possesses two degrees of freedom. The
phenomenon that full suppression of self-excited vibrations can be achieved by interaction with parametric
excitation was discovered by A. Tondl in monograph [8]. The conditions for full vibration suppression
have been formulated mathematically in Ref. [9] and later, using another approach, in Refs. [10–12].
It was found that self-excited vibrations can be fully cancelled by parametric excitation within a frequency
interval near a parametric combination resonance frequency of the summation- or difference-type, as defined
in Ref. [3]

Z � jO1 � O2j=N; N ¼ 1; 2; . . . , (2)

wherein frequencies O1 and O2 are two undamped natural frequencies of the system and Z is the frequency of
the parametric excitation. A specific parametric excitation that stabilises an otherwise unstable system is called
to be at parametric anti-resonance. The main contributions with respect to parametric anti-resonances and a
negative damping coefficient can be found in Refs. [8–11,13–15]. Numerical verification of damping by
parametric stiffness excitation can be found in Refs. [14,16] or Ref. [15]. Finally, first experimental results of
damping by parametric stiffness excitation of artificial lumped mass systems with two degrees of freedom can
be found in Refs. [17,18] showing great potential of being applied in practical applications. The main benefit of
the periodic open-loop control of one or more physical parameters is that no feedback of the system response
is needed, which differs from established work on periodic feedback control, see e.g. Ref. [19].

This method of suppressing self-excited vibrations has been studied for the case of a harmonic stiffness

variation in Refs. [9,14,15]. The first works within this scope dealing with a time-periodic damping coefficient
in combination with a negative damping coefficient can be found in Refs. [15,20]. The investigation of
parametric anti-resonances in case of a variation of all physical properties—a simultaneous single-frequency
variation of stiffness, damping and inertia coefficients—can be found in Ref. [15]. The actual contribution
examines the combination of two types of parametric excitation, a simultaneous and synchronous stiffness and
damping variation as initially investigated in Ref. [21]. To understand the potentials and limitations in the
application field of damping by parametric excitation, the following study examines the stability boundary
curves in the system parameter space.

The interaction between parametric stiffness and damping variation is of great importance for
implementations of parametric excitation, since, except for some generic cases, it is rather difficult to control
a single physical property without changing other properties in a specific system. In practical applications this
type of variation may appear quite naturally, since the realisation of a mechanical device for stiffness variation
almost certainly induces also a change of its damping with the same phase, synchronously, as its stiffness. An
easy to imagine physical example is a beam with a time-varying length. Varying the length periodically causes
a periodical change of the bending stiffness of the beam. Simultaneously, the structural damping is varied
periodically, because the part of the beam that experiences vibrations changes periodically, too. Both
variations proceed synchronously.

In the following an analytical stability analysis is performed for a system in normal form and possessing two
degrees of freedom. Thereafter, stability conditions are given for systems with multiple degrees of freedom and
general conclusions are drawn. Finally, two numerical examples are discussed and compared to the analytical
predictions.
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2. Stability analysis

Linear differential equations with time-dependent, but periodic coefficients cannot be solved analytically
exact. Sometimes an exact solution cannot be obtained for a differential equation and an approximate
solution must be found. Other times, an approximate solution may convey more information than an exact
solution. In this study, the exact solution is approximated by performing a perturbation technique as used in
the literature in various fields of physics. Famous representatives of these techniques are: harmonic balance
(or two-timing), Poincaré–Lindstedt method, averaging method, method of multiple scales or successive
approximation to mention the most popular ones. A general survey of these methods can be found in
Refs. [22–24]. The method of vibrational mechanics as proposed in Ref. [25] leads to demonstrative physical
interpretations if the fast and the slow motions are coupled additively, but this method is not capable of
providing a solution if the slow and the fast motion are coupled multiplicatively, as it is the case in Eq. (1). The
methods above assume that the scaling factor � is small. A method for arbitrary size of � based on the original
Lyapunov transformation can is developed in Ref. [26] but leads to expressions that are hard to interpret.
High-frequency effects as outlined in Ref. [27] are not considered here, since damping by parametric excitation
is mainly effective in the low-frequency domain in the range of the first modes of a system. The method chosen
here is the averaging method, see Ref. [28], which is a method with a strong mathematical background. The
approximations to the solution will be derived for a first-order perturbation and are only valid in a region and
on the time scale 1=�. Only systems with distinct eigenvalues are considered.

2.1. Equations of motion

For the case of a synchronous damping and stiffness variation the inertia matrix is kept constant while the
stiffness and damping matrices are varied periodically with a frequency Z

MðZtÞ ¼M0; KðZtÞ ¼ K0 þ �Kt cosðZtÞ; CðZtÞ ¼ C0 þ �Ct cosðZtÞ, (3)

where the index 0 denotes the constant part and the index t the time-dependent part of the corresponding
matrix. Rescaling the time-dependent damping matrix for small values �Ct 7!Ct in order to capture the
influence of Ct within a first-order analysis, the general linear equations of motion in Eq. (1) simplify to

M0z
00ðtÞ þ �C0z

0ðtÞ þ K0zðtÞ ¼ ��fCt _zðtÞ þ KtzðtÞg cosðZtÞ. (4)

Restricting the following study to systems with distinct eigenvalues, the equations of motion can be
transformed to the normal form:

z00ðtÞ þ �Yz0ðtÞ þ O2zðtÞ ¼ ��fRz0ðtÞ þQzðtÞg cosðZtÞ, (5)

where

O2 ¼ T�1M�10 K0T, (6)

Y ¼ T�1M�10 CtT; Q ¼ T�1M�10 KtT; R ¼ T�1M�10 CtT. (7)

The transformation matrix T is defined by the diagonal matrix of squared natural frequencies O2. Using
Einstein summation, a convention that repeated indices are implicitly summed over, Eq. (5) can be rewritten in
the comprehensive form

z00i ðtÞ þ O2
i ziðtÞ ¼ ��fYijz

0
jðtÞ þ fRijz

0
jðtÞ þQijzjðtÞg cosðZtÞg. (8)

Herein i is the free index. For a system with two degrees of freedom i; j ¼ 1; 2.
From now on the factor � is assumed to be small. The approach presented bellow is a natural extension of

the procedure applied in Ref. [11] or Ref. [10].
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2.2. Transformation and averaging

Applying a time transformation to Eq. (8) in order to normalise the frequency Z to become one on the
chosen time scale gives

Zt 7!t; ðÞ0 ¼
d

dt
; ðÞ� ¼

d

dt
; ziðtÞ7!ziðtÞ. (9)

Allowing a small detuning of first order near Z0 of the form

Z ¼ Z0 þ �sþ Oð�2Þ, (10)

dividing Eq. (8) by Z2 and expanding the coefficients to Taylor series for small values of parameter � gives

€zi þ$
2
i zi ¼ �

�

Z20
fZ0Yij _zj þ fZ0Rij _zj þQijzjg cos t� 2Oi$iszig þ Oð�2Þ (11)

with the abbreviations $i ¼ Oi=Z0. For a first-order approximation all terms of higher order than � are
neglected. Similar to the classical method of estimating the particular solution from the homogenous solution
by variation of parameters, the coordinate transformation

zi ¼ ui cos$itþ vi sin$it; _zi ¼ �ui$i sin$itþ vi$i cos$it (12)

is performed that fulfills the unperturbed equations (� ¼ 0). By introducing the abbreviations si ¼ sin$it and
ci ¼ cos$it Eq. (11) is transformed to

_ui ¼ �
�

Z20$i

f iðu; tÞsi; _vi ¼
�

Z20$i

f iðu; tÞci (13)

with the state vector u ¼ ½u1; v1; u2; v2�
T and

f iðu; tÞ ¼ �Z0ðYij þ Rij cos tÞð�uj$jsj þ vj$jcjÞ �Qij cos t ðujcj þ vjsjÞ þ 2Oi$isðuici þ visiÞ.

The functions f isi and f ici on the right-hand side of this system of equations are quasi-periodic and can be split
into a finite sum of N periodic terms with periods Tk in t. For this case averaging method in the general case

from Ref. [28] can be applied

_̂ui ¼ �
XN

k¼1

1

Tk

Z Tk

0

~F
s

i;kðû; tÞdt; _̂vi ¼ �
XN

k¼1

1

Tk

Z Tk

0

~F
c

i;kðû; tÞdt, (14)

where the difference between the solutions u of the original and û of the averaged system is of order �,
ûiðtÞ � uiðtÞ ¼ Oð�Þ, on the time scale 1=�. The integration over Tk is carried out for fixed average values û.

Hence, for averaging first the periods of the right-hand sides of Eq. (13) have to be determined. With
the help of decomposition theorems the arising products of the trigonometric terms on the right-hand sides of
Eq. (13) can be rearranged as a sum of basic trigonometric terms. For this simple system with two modes 12
different periods arise. Averaging over a basic trigonometric term yields always zero, except for the case where
a term becomes resonant, i.e. the argument of a cosine function vanishes.

The following study will be performed for the case of a parametric combination frequency of first-order as
defined in Eq. (2) for N ¼ 1. Combination resonances of higher-order N may be applied to suppress self-
excited vibrations, too, but in general their effectiveness is negligible compared to N ¼ 1. Averaging Eq. (13)
for N ¼ 1 results in

_̂ui ¼
�

Z20$i

�
Z0
2
Yii$i ûi �

Qij

4
v̂j � Z0

Rij

4
ûj � Oi$isv̂i

� �
,

_̂vi ¼
�

Z20$i

�
Z0
2
Yii$i v̂i �

Qij

4
ûj � Z0

Rij

4
v̂j þ Oi$isûi

� �
, ð15Þ

where the upper signs correspond to Z0 ¼ jO1 � O2j and the lower signs to Z0 ¼ O1 þ O2. Choosing the upper
signs and setting Rij ¼ 0 these equations coincide with Ref. [11, p. 69].
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2.3. Stability conditions

Introducing the complex abbreviations

ŵ1 ¼ û1 þ jv̂1; ŵ2 ¼ û2 � jv̂2, (16)

where j ¼
ffiffiffiffiffiffiffi
�1
p

is the complex unit, Eq. (15) is equivalent to

_̂w ¼
�

Z20

�
Z0
2
Y11 þ jO1s �

Z0
4O1
ðO2R12 � jQ12Þ

�
Z0
4O2
ðO1R21 þ jQ21Þ �

Z0
2
Y22 � jO2s

2664
3775ŵ (17)

with the complex state vector ŵ ¼ ½ŵ1; ŵ2�
T. After rescaling time by �=Z20 the characteristic equation of the

coefficient matrix is a complex polynomial of order two

l2 þ ð1
2
Z0ðY11 þY22Þ � jðO1 � O2ÞsÞlþ ð12 Z0Y11 � jO1sÞð12 Z0Y22 � jO2sÞ

�
Z20

16O1O2
ðO2R12 � jQ12ÞðO1R21 þ jQ21Þ ¼ 0. ð18Þ

Applying the extended Routh–Hurwitz criterion for complex polynomials in Ref. [29], a simplification of the
original criterion in Ref. [30], the stability of this polynomial can be determined.

First analysing the case for s ¼ 0 in Eq. (10), Z ¼ Z0, this polynomial is stable if and only if

Y11 þY2240, (19)

Y11Y22 �
Q12Q21

4O1O2
�

R12R21

4
4

b

ðY11 þY22Þ
2
40, (20)

are fulfilled, where

b ¼ �
Q12R21

4O2
�

R12Q21

4O1
. (21)

Note that the interaction term b vanishes in case of a pure stiffness excitation, Rij ¼ 0, as well as in case of a
pure damping excitation, Qij ¼ 0.

For the general case of sa0 in Eq. (10), the following two conditions have to be satisfied for the system
being stable:

Y11 þY2240, (22)

a0s2 þ a1fQij ;Rijgsþ a2fQij ;Rijg40. (23)

Note that the conditions in Eqs. (22) and (19) coincide and are independent of the parametric excitation. This
condition can be interpret as the main stability condition for damping by parametric excitation. The condition
in Eq. (23) defines the critical values

s1 ¼ ess � bskc and s2 ¼ ess þ bskc (24)

of the detuning s in Eq. (10) where the frequency shift ess and the frequency width bskc are

ess ¼
ðY11 �Y22Þ

2Y11Y22

b
2
; bskc ¼

ðY11 þY22Þ

2Y11Y22

ffiffiffiffiffiffiffi
dkc

p
, (25)

and the parametric excitation term dkc is

dkc ¼ �Y11Y22 Y11Y22 �
Q12Q21

4O1O2
�

R12R21

4

� �
þ

b
2

� �2

. (26)

These critical values determines the stability border in the system parameter space. To decide which side of the
boundary is stable and which is unstable the additional condition in Eq. (20) is needed. If this condition is
fulfilled then a parametric anti-resonance near Z0 with a width of bskc in Eq. (25) is obtained. Otherwise there is
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no damping by parametric excitation possible and the vibration amplitudes grow without restriction. These
results hold for a first-order perturbation and are valid on the time scale 1=�.
3. General discussion

The stability conditions in the previous section represent the stability of the slow vibrations in the system
which enable pertinent interpretations. These conditions were derived for a system with two degrees of
freedom only. However, for a perturbation analysis of first order and a parametric excitation at a single
frequency Z as considered in this contribution, the results can be extended straightforwardly to systems with
multiple degrees of freedom.

As shown in Eq. (15), for a system with two degrees of freedom a parametric excitation at Z0 ¼ jO1 � O2j

couples the corresponding states u1, v1 with u2, v2. In analogy to Ref. [31], for a system with n degrees of
freedom the same coupling remains and, consequently, in addition to Eq. (15), the uncoupled equations of
motion

wi ¼ ui þ jvi; _̂wi ¼
�

Z20
�
Z0
2
Yii þ jOis

n o
ŵi for i ¼ 3; . . . ; n, (27)

emerge for each degree of freedom that is not affected by parametric excitation, i.e. ia1; 2. The necessary and
sufficient stability conditions for Eq. (27) are the trivial conditions

Yii40 for iX3. (28)

These conditions can be simply added to the results obtained in the previous section which leads to the
stability conditions of a system with multiple degrees of freedom.
3.1. General case

Examining the case where the parametric excitation is not present in the system, Qij ¼ 0 ¼ Rij , the stability
conditions in Eqs. (19) and (20) collapse and yield together with Eq. (28)

Yii40 for i ¼ 1; . . . ; n. (29)

The interaction term b in Eq. (21) vanishes and the parametric excitation term dkc in Eq. (26) becomes
negative and leads to purely imaginary critical values of s in Eq. (24). Hence, the self-excited system without
parametric excitation is stable if all modal damping coefficients in the main diagonal of the modal damping
matrix are positive or equivalently, the self-excitation is weak and does not destabilise the system. The
following cases can be distinguished:
(i)
 If these conditions hold there is no negative modal damping present in the system and, hence, the system is
stable. In this case parametric excitation near a parametric combination frequency Z0 in Eq. (2) may be
used to enhance the system damping and vibration suppression is achieved, see the discussion in Ref. [31].
(ii)
 If one condition in Eq. (29) is violated for i ¼ 1 or i ¼ 2, Y11Y22o0, but the less restrictive condition in
Eq. (22) is satisfied, the system is unstable but may be stabilised by a proper parametric excitation near the
frequency Z0 depending on the condition in Eq. (23).
(iii)
 In all cases where at least one of these diagonal damping terms vanishes, the system without parametric
excitation is on its stability limit, the vibrations are neither damped nor excited but can be stabilised by a
proper parametric excitation, according to point (ii).
(iv)
 Finally, if the conditions in Eq. (29) are violated for i ¼ 1 and 2, respectively, the system is unstable and
cannot be stabilised by any parametric excitation.
The focus of this study are the cases (ii) and (iii) for which a destabilising self-excitation, Y11Y22o0, may be
stabilised by a proper parametric excitation.
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3.2. Single parametric excitation

The extended conditions for vibration suppression in Eqs. (22)–(26) can be simplified to the case of
parametric excitation of just one physical parameter as investigated in the literature. For the case of a pure
stiffness excitation, Rij ¼ 0, the interaction term b in Eq. (21) vanishes and the parametric excitation term in
Eq. (26) becomes

dk ¼ �Y11Y22 Y11Y22 �
Q12Q21

4O1O2

� �
. (30)

Consequently, the frequency shift in Eq. (25) disappears and the critical values of the detuning s
corresponding to Eq. (24) are

s1 ¼ �bsk; s2 ¼ bsk. (31)

The extended stability conditions in Eqs. (22)–(24) simplify to the equivalent conditions

Y11 þY2240, (32)

bsk ¼
Y11 þY22

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Y11Y22 � ðQ12Q21=4O1O2Þ

Y11Y22

s
, (33)

as derived in Refs. [9–12,14], and summarised in Ref. [31]. It should be mentioned that the critical expressionbsk in Eq. (33) was found in Refs. [2,4,5] or [6]. However, since these studies assumed positive damping the
main condition in Eq. (32) was not derived and a parametric anti-resonance could not be discovered. As
shown in Ref. [31], the conditions in Eqs. (32)–(33) are valid for a system with multiple degrees of freedom if
additionally the conditions in Eq. (28) are satisfied.

Similarly, in the case of a pure damping excitation, Qij ¼ 0, the stability conditions in Eqs. (22)–(24)
simplifies into the equivalent conditions

Y11 þY2240, (34)

bsc ¼
Y11 þY22

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Y11Y22 � ðR12R21=4Þ

Y11Y22

s
, (35)

as derived in Refs. [20,12]. Although in case of a pure stiffness excitation the stability condition in Eq. (33) is
affected by the kind of parametric combination frequency chosen in Eq. (2) this is not the case for a pure
damping excitation in Eq. (35). In analogy to Ref. [31] for a pure stiffness variation, these conditions are valid
for a system with multiple degrees of freedom if additionally the conditions in Eq. (28) are satisfied.

Note the following facts:
(i)
 The critical value bsc of a pure damping variation in Eq. (35) is equal at both frequencies Z0 ¼ jO1 � O2j.
Consequently, for a given system damping, Yii is fixed and bsc depends entirely on the sign of the term
R12R21 that reflects the symmetry of the parametric excitation matrix R. For a system with a destabilising
self-excitation,Y11Y22o0, only a skew-symmetric excitation matrix Rmay enhance the radical in Eq. (35)
leading to a vibration suppression by parametric excitation near Z0 ¼ jO1 � O2j.
(ii)
 Contrary to a pure damping variation, the critical value bsk of a pure stiffness variation in Eq. (33)
depends on whether the parametric excitation frequency is near Z0 ¼ jO1 � O2j or Z0 ¼ O1 þ O2. Now, for
a system with a destabilising self-excitation, Y11Y22o0, a parametric anti-resonance may appear near
Z0 ¼ O1 þ O2 for a skew-symmetric parametric excitation matrix Q, Q12Q21o0, and near Z0 ¼ jO1 � O2j

for a symmetric excitation matrix Q.

(iii)
 The stability condition in Eq. (22) of a synchronous stiffness and damping excitation coincides with the

stability condition in Eq. (32) or Eq. (34) obtained for a pure stiffness and damping excitation,
respectively. Consequently, the main stability condition is preserved.
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(iv)
 In case of a pure stiffness variation, see Eqs. (32) and (33) as well as in case of a pure damping variation,
see Eqs. (34) and (35), no additional frequency shift ess as in Eq. (24) occurs.
(v)
 The resultant frequency width bskc in Eq. (25) of the synchronous stiffness and damping excitation is not
equivalent to the sum of the frequency widths due to a pure stiffness excitation bsk in Eq. (33) and the
frequency width due to a pure damping excitation bsc in Eq. (35),

bskcabsk þ bsc. (36)
3.3. Synchronous parametric excitation

If one demands a design with stability at Z0 ¼ jO1 � O2j and simultaneously at Z0 ¼ O1 þ O2 the stability
conditions in Eqs. (19)–(20) have to be satisfied for the upper and lower signs, respectively. This requirement
demands the following conditions to be satisfied:

Y11 þY2240 and 04Y11Y224
R12R21

4
þ
ðQ12R21=O2Þ

2
þ ðR12Q21=O1Þ

2

16ðY11 þY22Þ
2

. (37)

This means that in the case of a destabilising self-excitation,Y11Y22o0, it may be possible to stabilise a system
at the parametric excitation frequency of the difference type Z0 ¼ jO1 � O2j and the summation type Z0 ¼
O1 þ O2 simultaneously, if at least the necessary condition

04Y11Y224
R12R21

4
(38)

is fulfilled. This requires the parametric damping matrix R in Eq. (5) to be skew-symmetric and consequently
Ct in Eq. (4). Note that for a pure stiffness excitation simultaneous vibration suppression is not possible, as
outlined in Ref. [15]. This result can be concluded straightforwardly in Eq. (38) for R12R21 ¼ 0.

For a specific system parameter p the stability boundary in the system parameter space projected to the p–Z-
plane is determined by

Z0 þ �ess � �bskcpZpZ0 þ �ess þ �bskc (39)

following from Eqs. (10) and (24). A graphical interpretation is shown in Fig. 1 that points out the difference
between a stiffness excitation, Rij ¼ 0, and a synchronous stiffness and damping excitation. The dotted line
indicates the stability boundary curve without an additional frequency shift �ess from the combination
resonance frequency Z0 as it would arise for a pure stiffness excitation according to Eq. (33). The solid line
indicates the final stability boundary curve resulting for a synchronous excitation according to Eqs. (39) and
(25). Consequently, the skeleton line Z0 of the stability boundary curve in case of a pure stiffness excitation is
moved to the skeleton line Z0 þ �ess in case of a combined synchronous stiffness and damping excitation.

The frequency shift ess in Eq. (25) depends on whether the frequency of the stiffness variation is near to a
parametric combination frequency of the difference type Z0 ¼ jO1 � O2j or of the summation type
Z0 ¼ O1 þ O2. This circumstance results from the expression b in Eq. (21) because the sign of the second
�0  �0 + ��s 

 ��s

��kc �

p
~

~

��k��k
��kc

Fig. 1. Shift of stability border in dependence on a system parameter p.
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expression in b, R12R21, is conserved while the sign of the first expression, Q12Q21, alters. Consequently, for a
fixed system parameter p the resulting value of the frequency shift ess is not the same at the frequencies
Z0 ¼ jO1 � O2j. Furthermore, if the condition

O1Q12R21oO2R12Q21 (40)

is fulfilled the resulting sign of ess differs, too. This consequence is sketched in Fig. 2 for A ¼ O1Q12R21,
B ¼ O2R12Q21,A4B, and a destabilising self-excitation Y11Y22o0 with Y114Y22.

Due to the frequency shift bss of the stability boundaries the stability conditions in Eqs. (19)–(20) are helpful
to determine the stability on the frequency line Z0, but in general they are irrelevant for a classification of the
stability domain in the parameter space as performed in Ref. [31] for a pure stiffness variation. The adequate
critical conditions for non-vanishing interaction term follows from a stability analysis of the original
characteristic polynomial in Eq. (18) by mapping s7!ess þ s, where ess is the resulting frequency shift derived in
Eq. (25) from the stability analysis at Z ¼ Z0, see Ref. [15]. Performing this second stability analysis, the shifted
frequency line Z0 þ �ess is stable if and only if

Y11 þY2240; �
dkc

Y11Y22
40, (41)

are fulfilled instead of Eqs. (19)–(20). Thee inequalities in Eq. (41) enable an elegant classification of the
conditions in Eqs. (19), (20), and (24) for a synchronous damping and stiffness variation that is summarised in
Table 1. These and the following results for a two-degrees-of-freedom system can be extended easily to a
system with multiple degrees of freedom if additionally the conditions in Eq. (28) are met.

Table 1 shows the qualitative stability map in dependency of an arbitrary system parameter p and the
parametric excitation frequency Z for a non-vanishing interaction term b. Read this table by either using
always the upper sign or always the lower sign in analogy to the previous calculations. Plotting the frequency
Z0 ¼ jO1 � O2j as a function of a system parameter p results in a frequency line. The frequency shift ess is
drawn for a positive interaction term b andY114Y22. If the conditions in Eq. (41) are violated then the system
becomes unstable for parameter values p lying on the shifted frequency line Z0 þ �ess. This is shown in the left
column in Table 1. If additionally the stability conditions in the general case from Eq. (29) are violated, then
the system is unstable on the shifted frequency line as well as in the remaining parameter domain and the
stability width bskc is purely imaginary, see left bottom cell. On the other hand, if the conditions in Eq. (29) are
satisfied, the system is unstable in the vicinity of the shifted frequency line Z0 þ ess and stable in the remaining
parameter domain, see left top cell. In this case the frequency Z0 is called a parametric resonance
frequency,because it disturbs an otherwise stable system.

For a stable frequency line Z0 þ �ess the conditions in Eqs. (19) and (20) are satisfied for the upper or the
lower signs. This is shown in the right column in Table 1. Now if the general stability conditions in Eq. (29) are
satisfied then the system is stable in the whole parameter domain, see right top cell. On the other hand, if the
general stability conditions are violated, the system remains stable in the vicinity of the frequency line but
p
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becomes unstable in the remaining parameter domain, see right bottom cell. In this case the frequency Z0 is
called a parametric anti-resonance frequency, because it stabilises an otherwise unstable system.

Comparing the two left cells reveals that passing the critical condition Y11Y22 ¼ 0 from Y11Y2240 to
Y11Y22o0 by varying a system parameter p leads to a change of the sign of the frequency shift ess.
Additionally, a positive parametric excitation term dkc, corresponding to a real-valued stability width bskc,
switches to a negative parametric excitation term, corresponding to a purely imaginary stability width.
Generally, if a system parameter p fulfills this switching condition Y11Y22 ¼ 0, then the stability on the shifted
frequency line Z0 þ �ess switches from stable to unstable or vice versa. This fact is indicated by a hatched
border. Reaching this border for such a critical parameter value, the corresponding column have to switched.
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The case where Y11 þY22o0 is valid leads always to an unstable system. In this case the stability map for a
certain parameter looks like in the sketch in the left bottom corner in Table 1.

4. Example system

A two-mass system with spring- and damper-elements as drawn in Fig. 3 is considered, which is an
extension of the originally investigated systems in Refs. [21,32]. The system possesses two degrees of freedom:
the vertical positions z1, z2 of the two masses. The top mass m2 is connected by a linear spring k2 to the bottom
mass m1. A constant flow U generates a self-exciting force which acts on mass m2 in direction z2. The
subsystem m2; k2 rests on a base mass m1 which is attached to the inertial reference frame by a spring-element
k1ðtÞ and a viscous damping element c1ðtÞ. This system may represent a model of the first two modes of a
mechanical structure with corresponding modal masses. The stiffness and damping coefficient of the
suspension consist of a constant and a controlled small time-dependent component

k1ðtÞ ¼ k0ð1þ �k cosðZtÞÞ and c1ðtÞ ¼ c0ð1þ �c cosðZtÞÞ. (42)

Since there is no phase difference, both coefficients are varied synchronously in time. The flow-induced self-
excitation force due to the constant flow velocity U is modelled by a linear negative damping coefficient
resulting from a linearised van der Pol or Rayleigh model

Fse ¼ ðcse � dseU2Þ_z2. (43)

For the two mass system that is under the simultaneous influence of self-excitation and parametric
excitation as shown in Fig. 3 the equations of motion are given by

m1 0

0 m2

" #
€zþ

c1ðtÞ 0

0 cse � dseU2

" #
_zþ

k1ðtÞ þ k2 �k2

�k2 k2

" #
z ¼

0

0

� �
(44)

with the state vector z ¼ ½z1ðtÞ; z2ðtÞ�T. For this simple system the parametric excitation matrix is symmetric, in
which case vibration suppression may be achieved for a pure stiffness excitation near Z0 ¼ jO1 � O2j only, see
Section 2.3 and Ref. [15] for more details. However, a pure damping variation with a symmetric parametric
excitation matrix always destabilises the system. The question arises whether the parametric anti-resonance due
to the stabilising stiffness excitation or the resonance due to the destabilising damping excitation will dominate.

In order to examine the analytical results obtained for vibration suppression, the dynamic behaviour of the
system in Eq. (44) is compared for different kinds of parametric excitations: a pure harmonic stiffness
variation and the investigated synchronous stiffness and damping variation. Since the stability analysis in the
previous section was performed for the normal form in Eq. (5) the equation of motion in Eq. (44) has to be
transformed according to Eqs. (7) and (9). The following non-dimensional parameters are introduced in order
to decrease the number of system parameters for the numerical analysis

M ¼
m2

m1
; k1 ¼

c0

m1o2
; k2 ¼

cse � dseU2

m1o2
; Q2 ¼

k0

m1o2
2

; �k; and �c (45)
m1 m2

z1 z2

k1(�) k1(�)

k2

c1

U

m1 m2

z1 z2

k2

c1(�)
U

Fig. 3. Two mass system with a pure stiffness variation (a) or a synchronous stiffness and damping variation (b).
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with the undamped natural frequency of subsystem 2, o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
, and the mass ratio M and frequency

ratio Q. These parameters represent relations between the dimensional physical system parameters. For a
certain physical system specific values for some of the parameters have to be chosen additionally.

To verify the results of the analytical analysis an exact method based on Floquet’s theorem is used in
combination with numerical time integration (see Ref. [16] for details). By numerically integrating the system
equations in Eq. (44) for fixed system parameters the monodromy matrix after one period of the parametric
excitation is calculated. The eigenvalues of the monodromy matrix determine the stability of the system. For
systems with a larger number of degrees of freedom, the numerical procedure proposed in Ref. [33] is
computationally more efficient.

For the equations of motion in Eq. (44) the sum of the modal damping coefficients in the main stability
condition in Eqs. (32), (34) and (41) can be rewritten as

Y11 þY22 ¼ k1 þMk240. (46)

Resulting from the second inequality in Eq. (26), a non-dimensional excitation ratio r between the stiffness and
damping excitation can be defined and expressed by the parameters introduced in Eq. (45)

r ¼
O1Q12R21 þ O2R12Q21

Q12Q21 � O1O2R12R21
¼
�k�ck2Qð1þM þQ2Þ

ð�ck2Þ
2
� �2kQ3

. (47)

This ratio is an indicator for the strength of the damping variation Rij with respect to the stiffness excitation
Qij. The effects of the stiffness excitation exceed the effect of the damping excitation if ru1 and vice versa if
r]1. For ru1 the stability gained by pure stiffness variation is conserved while for r]1 the destabilising
damping variation outweighs the otherwise stable pure stiffness variation. A good approximation for the
excitation ratio in Eq. (47) can be obtained if the interaction term b is neglected and only the left-hand side of
the second inequality in Eq. (26) is taken into account

~r ¼
O1O2R12R21

Q12Q21

¼
ð�cMk2Þ

2

�2kQ3
. (48)

Two numerical sets as listed in Table 2 are investigated that both satisfy the condition in Eq. (46). Initially
the numerical set for the weakly damped system A is analysed. Figs. 4 and 5 show stability charts for a pure
harmonic stiffness excitation and for a synchronous stiffness and damping excitation, respectively, in
dependency of the non-dimensional system parameter Q in Eq. (45) and the frequency ratio Z=o2, where Z is
the parametric excitation frequency as defined in Eq. (4). The shadowed area indicates the numerically
calculated stability area. The bold solid line shows the analytical stability border calculated from
Eqs. (32)–(33) in Fig. 4 and from Eqs. (22)–(23) in Fig. 5. Although from a mathematical point of view the
scaling parameters �k, �c in Eq. (45) are not small as assumed in the analytical stability analysis the stability
conditions obtained still accurately reproduce the system behaviour.

For the system without parametric excitation, �k ¼ 0 ¼ �c, the trivial stability boundary according to
Eq. (29),Y11Y22 ¼ 0, leads to the critical stiffness ratio Qcrit ¼ 1:73. For a frequency ratio Q4Qcrit ¼ 1:73, the
modal damping parameter Y22 is negative and system A is dynamically unstable due to self-excitation even
without the parametric excitation operating. By activating a parametric excitation, �ka0, it is possible to
suppress the system vibrations due to a destabilising self-excitation. Such a parametric excitation deforms the
trivial stability boundary Q ¼ Qcrit as is shown in Figs. 4 and 5 leading to regions of stability and instability,
respectively.
Table 2

Non-dimensional parameters

M k1 k2 �k �c

System A 0:5 0:05 �0:01 0:3 0:5
System B 5 0:5 �0:1 0:3 1
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Fig. 4. Comparison of analytical and numerical analysis of Q–Z-stability chart for pure harmonic stiffness excitation (�c ¼ 0) in system A:

shaded region numerical, solid line analytical result.
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Fig. 5. Comparison of analytical and numerical analysis of Q–Z-stability chart for synchronous stiffness and damping excitation in

system A: shaded region numerical, solid line analytical result.
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A key to the interpretation of the results are the parametric resonance frequencies of the first kind 2O1;2=N

and those of the second kind jO1 � O2j=N, with N ¼ 1; 2 (see Eq. (2)). These frequency curves are plotted as
dashed lines. If the excitation frequency Z is equal to the parametric anti-resonance frequency Z0 ¼
jO1 � O2j þ �ess the vibration can be suppressed successfully. On the other hand, choosing an arbitrary value of
Z outside the shaded area results in increasing vibrations due to the destabilising self-excitation. An additional
but small stability area is caused by the second-order anti-resonance frequency jO1 � O2j=2. Analytical and
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numerical results agree amazingly well in the vicinity of the main anti-resonance frequency. For QoQcrit the
initially stable system is destabilised near the parametric resonance frequencies and the stability area is
destroyed. For Q4Qcrit the system is unstable due to the self-excitation and additionally unstable near the
parametric resonance frequencies where the vibration amplitudes grow faster than without any parametric
excitation present in the system. However, near the main parametric anti-resonance frequencies jO1 � O2j the
system vibrations are suppressed successfully in regions within the conventional system without periodic
control of one or more system parameters is unstable. A stable frequency ratio of 7.8 can be achieved.

Comparing Figs. 4 and 5 reveals the effect of the additional shift as predicted by Eq. (39). Due to the
additional synchronous damping variation the original skeleton line Z0 in Fig. 4 is modified by the additional
shift �ess in Fig. 5 as outlined in Fig. 1. Furthermore, although a pure damping variation is always destabilising
for the system chosen, in combination with a synchronous stiffness variation even a small improvement near
Z ¼ 1:5 is obtained. On the other hand, the adaption of the skeleton line leads to a loss of stability near
Z ¼ 0:7. For the weakly damped system A the stability region gained and created by the stiffness variation, is
only disturbed but not destroyed by the interaction with the destabilising damping variation. The stable
parametric anti-resonance domain is conserved, in some regions near the trivial stability boundary even
enlarged. The analytical analysis predicts an additional shift of the skeleton line of the stability boundary due
to the combination of stiffness and damping variation that explains the small loss in and the small enlargement
of the stable domain. Note that the results derived in the previous section can be applied to predict instability
regions near Z0 ¼ O1 þ O2 and give the same accuracy as the prediction of stability gain near Z0 ¼ jO1 � O2j.
The stability boundaries are not plotted to keep the stability map clear.

For system A the excitation ratio defined in Eq. (48) is very small within the parameter range of Q, r;er51,
which corresponds to a weak interaction of both excitations. In this case a disturbance of the stability gain
near Z0 ¼ jO1 � O2j can be recognised only close to the trivial stability boundary Y11Y22 ¼ 0, at which the
denominators in Eq. (25) vanish. Choosing the second parameter set in Table 2 representing the strongly
damped system B, the excitation ratio in Eq. (48) becomes 1 at Q~r ¼ 1:41. The exact ratio in Eq. (47) yields
Qr ¼ 1:76. The stabilising effect of the stiffness excitation exceeds the destabilising effect of the damping
excitation for Q4Qr and vice versa for QoQr.

Stability maps of the strongly damped system B are shown in Figs. 6 and 7. Now the stability gain by
parametric anti-resonance does not cover such a large value range of Q as for the system A in Figs. 4 and 5.
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Fig. 6. Comparison of analytical and numerical analysis of Q–Z-stability chart for pure harmonic stiffness excitation (�c ¼ 0) in system B:

shaded region numerical, solid line analytical result.
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For the system without parametric excitation, Qij ¼ 0 ¼ Rij , the trivial stability boundary Y11Y22 ¼ 0 leads to
the critical stiffness ratio Qcrit ¼ 1:54. In case of a pure stiffness variation the analytical predictions agree well
with the numerical results although the perturbation analysis was performed under the assumption of small
damping, see Fig. 6. In case of the synchronous damping and stiffness variation the assumption of small
damping in the analytical stability analysis becomes evident, see Fig. 7. In this case the analytical predictions
fail quantitatively but are capable to explain the stability map qualitatively. In fact the stability gained by
parametric anti-resonance in Fig. 6 is shifted towards the new skeleton line Z0 þ �ess in Fig. 7 so much that the
stability gain at the anti-resonance frequency Z0 ¼ jO1 � O2j disappears. The stability boundary is modified
strongly, particularly near the trivial stability boundary Qcrit, however, the parametric anti-resonance itself is
conserved. In more detail the stabilising effect of the stiffness excitation exceeds the destabilising effect of the
damping excitation for Q4Qr and vice versa for QoQr. From the numerical point of view it may appear that
the parametric anti-resonance at Z0 is destroyed but the analytical investigation shows that the anti-resonance
is actually shifted.

Summarising, the analytical predictions outlined in the previous section are confirmed and explain the
numerical results in great detail. It was shown that if a self-excited system can be stabilised by a pure stiffness
excitation it can be stabilised by a synchronous stiffness and damping excitation, too. The stability gain is
conserved. The main difference between these excitations is the location of the anti-resonance frequency that is
shifted from regions in the vicinity of the skeleton line Z0 to the skeleton line Z0 þ �bs. The interaction between
stiffness and damping excitation is crucial in the vicinity of the trivial stability boundaryY11Y22 ¼ 0 and becomes
smaller with increasing distance from this boundary. In common mechanical structures the system damping is
much smaller than the stiffness, c15k1, in which case the interaction of the parametric excitations is weak, r;er51,
and the anti-resonance effect remains close to the skeleton line Z0, similar to Fig. 5. It is worth to mention that if
the pure stiffness excitation as well as the pure damping variation are resonant, a parametric anti-resonance
cannot be created by interaction of both excitation in a synchronous stiffness and damping excitation.

5. Conclusions

Systems with two and more degrees of freedom under the simultaneous influence of self-excitation and
parametric excitation by synchronous stiffness and damping excitation are examined. From previous studies it
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is known that a harmonic stiffness excitation with a frequency near the combination resonance frequency of
the system can stabilise an otherwise unstable system. In the present study general conditions for vibration
suppression are derived analytically for a synchronous stiffness and damping variation. These analytical
stability conditions enable a deeper understanding of the interaction of different kinds of parametric
excitation. The great benefit of the analytically approximated stability boundary curves is the elegant
classification of the stabilising effect of a parametric anti-resonance in the context of a classical parametric
resonance.

The analytically approximated predictions are compared to numerical time integration of the original
equations of motion for weakly and strongly damped mechanical systems. It is shown that for symmetric
excitation matrices a gain of stability domain created by a stiffness excitation may only be disturbed but not
destroyed by the interaction with a destabilising damping excitation. The main stable domain is conserved, in
some region even enlarged. The analytical analysis shows an additional shift of the skeleton line of the stability
boundary due to the interaction of stiffness and damping variation that explains the small loss and the small
enlargement of the stable domain.

The results demonstrate that parametric excitation at an appropriate frequency can be employed to extend
significantly the area of stability of systems with self-excitation even in case of a synchronous parametric
excitation. The proposed control strategy shows great potential being employed in practical applications when
a destabilisation due to self-excitation occurs or when the damping of transient vibrations in weakly damped
systems shall be enhanced.
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